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Abstract

Statistics has historically been grounded in the analysis and modeling of real world
data produced by human activities, scientific experiments or natural processes. The
rapid rise of AI is fundamentally altering this landscape: synthetic data - generated
by algorithms rather than observed from reality - is becoming a new data source in
science, industry, and policy. This shift challenges long-standing assumptions about
what data are, how they should be evaluated, and what it means to draw statistical
insights from them.

This position paper examines emerging phenomena, articulates key conceptual chal-
lenges, and outlines open research questions in synthetic data. It calls for the recog-
nition of a new research frontier - Generative Data Science - devoted to the statistical
principles underlying the generation, evaluation, and governance of synthetic data.
I argue that synthetic data necessitates a fundamental rethinking of core statistical
notions, including fidelity, utility, privacy, and trust, and that these dimensions are
intrinsically coupled rather than independently optimizable. Taken together, these ob-
servations and considerations motivate a generative paradigm for statistical modeling
and inference as an essential pillar of modern statistical science [12, 55].
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1 Introduction

Figure 1: Synthetic data include images, text, ta-
bles, graphs etc.

What we now refer to as synthetic data has
appeared for decades under various names and
in multiple forms - from simulated data in the
physical sciences, to imputed values in statis-
tical analysis, to images generated by GANs.
Recent attention to synthetic data is driven
largely by the proliferation of AI-generated
content, the growing demand for large and di-
verse datasets, and the increasing difficulty of
sharing sensitive information. These pressures
arise across a broad range of domains, includ-
ing computer vision, natural language process-
ing, network science, and tabular data analysis. Looking back to 2022, one already observes
widespread adoption of synthetic data in both research and industry; looking ahead to 2030,
its influence is poised to expand even further as a cornerstone of modern data science; see
Figure 1.

This position paper begins by highlighting two contemporary forces that make synthetic
data increasingly necessary. The first is concerned with the (empirical) scaling law of large
language models (LLMs) [19], which characterize LLM performance as

LM loss L(N,D) =
A

Nα
+

B

Dβ
+ C,

where N denotes model size and D denotes the size of the pre-training dataset. Beyond
increasing model capacity, the availability of sufficiently large training corpora constitutes a
fundamental bottleneck in further scaling LLM performance under this law. Moreover, re-
cent work [38] demonstrates that data quality also plays a crucial role: by removing “easy”
training samples, the scaling behavior can be improved from a power-law regime to an expo-
nential regime. Unfortunately, high-quality human-generated real data is rapidly running out
by 2026–2032 as projected in [44]; see Figure 2. In this context, the synthesis of high-quality
data emerges as a natural - and potentially indispensable - solution.
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Figure 2: Projections of the effective stock of
human-generated public text and dataset sizes
used to train LLMs.

A second force stems from regulatory con-
straints, including the General Data Protection
Regulation [13] and the California Consumer Pri-
vacy Act [5], which impose strict requirements
on data collection, sharing, and processing. In
sectors such as banking and digital marketing,
synthetic tabular data has therefore emerged as
a modern solution - preserving statistical prop-
erties while preventing the disclosure of sensitive
individual information.

Technically, data synthesizers fall into three
broad categories; for brevity, I focus on tabular
data synthesizers: (i) classical (non-)parametric
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statistical models, such as PrivBayes [57, 27]; (ii) deep generative models, including GAN-
based approaches such as CT-GAN [52] and diffusion-based methods such as AutoD-
iff [40, 41]; and (iii) language-model-based approaches, either as auto-regressive genera-
tors [25, 37], or as semantic encoders within hybrid generative pipelines, e.g., CTSyn [29].
Figure 3 illustrates the third paradigm. Somewhat surprisingly, pre-trained LLMs can gen-
erate tabular data with high statistical similarity - even in mixed-type settings with complex
constraints - and can augment small datasets with diverse and realistic samples by leveraging
web-scale knowledge and in-context learning capabilities.

Figure 3: LLMs can be adapted for synthetic tab-
ular data generation.

From a classical information-theoretic per-
spective, one might expect synthetic data to
offer little benefit, since it is ultimately gen-
erated from the raw data. This raises a nat-
ural question: can artificial data truly create
“something out of nothing”? However, this in-
tuition is difficult to reconcile with empirical
observations, as numerous synthetic data solu-
tions have already been successfully deployed
in practice - for enhancing adversarial robust-
ness [51], imputing missing values [34], pre-
serving privacy [52], and improving both the
utility and even the fairness of downstream
tasks [54, 56, 3]. Nevertheless, several fun-
damental questions remain unresolved: Can we reliably train models on synthetic data? To
what extent might sensitive information in the original data be leaked through synthetic data?
How should authorship and ownership of synthetic data be defined? This position paper sur-
veys recent progress (largely biased towards the author lab’s works) in this still empirical
landscape and argues that these reviews collectively point toward a promising new research
frontier in statistics - what one may refer to as Generative Data Science.

2 Large Language Models

Large language models (LLMs) have emerged as a major source of synthetic data. In this
section, we use LLMs as a representative synthesizer to make the challenges of generative
data science concrete in a broader context.

At a high level, an LLM defines a probabilistic model over sequences of discrete tokens
and generates text autoregressively by repeatedly sampling the next token conditioned on
previously generated tokens. Given a tokenized sequence x1, . . . , xT , the model factorizes
the joint distribution as

p(x1, . . . , xT ) =
T∏
t=1

p(xt | x1, . . . , xt−1),

where the conditional distributions are parameterized by a deep neural network trained
on large corpora of human-generated text in a self-supervised manner. From a statistical
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standpoint, this formulation places LLMs within the classical framework of probabilistic
generative modeling, albeit at an unprecedented scale and complexity.

The magic power of LLMs is closely tied to their ability to leverage massive pretraining
datasets and to generalize through contextual learning. During generation, an LLM does not
simply reproduce memorized training examples; rather, it synthesizes text by recombining
learned linguistic, semantic, and structural patterns. This capability makes LLMs a particu-
larly compelling engine for synthetic data generation. Recent empirical studies demonstrate
that LLM-generated text can augment training corpora, enhance robustness, and improve
downstream tasks such as reasoning and instruction following.

At the same time, the use of LLMs as text synthesizers raises fundamental challenges for
statistical evaluation. Unlike classical simulated data, synthetic text lacks a natural notion
of ground truth. Consequently, fidelity is often assessed using embedding-based similarity
measures, such as BERTScore, which emphasize semantic alignment rather than exact dis-
tributional agreement. While these metrics have proven useful in practice, it is often unclear
which aspects of the data-generating process they faithfully capture.

More broadly, evaluating LLM-generated text exposes a tension between surface-level
similarity and functional utility. Text that appears fluent and semantically coherent may
still exhibit hallucinations, biases, or subtle distributional shifts that affect downstream
tasks. Conversely, text that deviates lexically from real data may nevertheless preserve
task-relevant structure. These observations suggest that evaluation frameworks must move
beyond perceptual similarity and toward criteria grounded in statistical, computational, and
decision-theoretic considerations.

Finally, LLMs introduce unique challenges for privacy and governance in synthetic data
generation. High-capacity autoregressive models are known to exhibit memorization under
certain conditions, leading to potential leakage of sensitive training data. This phenomenon
complicates the interpretation of privacy guarantees and motivates the development of au-
diting tools - such as membership inference attacks and watermarking - specifically tailored
to discrete, sequential data. Understanding how privacy risks scale with model size, train-
ing data composition, and generation strategies remains an important open problem for
generative data science.

3 Generative Data Science

As illustrated by the case of LLMs, generative data science confronts a range of conceptual
and technical challenges. Consequently, it remains premature to delineate the full scope of
this emerging field. Accordingly, this position paper focuses on one foundational aspect: the
evaluation of synthetic data.

Such evaluation is typically organized around three key dimensions - fidelity, utility, and
privacy - as summarized in Figure 4. Fidelity assesses how well synthetic data statistically
match real data; utility measures their effectiveness when used to train downstream models;
and privacy quantifies the extent to which sensitive information from the original data may
be inferred from the synthetic data.
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3.1 Statistical Fidelity

Figure 4: Evaluation of synthetic data from
three perspectives.

In computer vision, fidelity is commonly under-
stood as the degree to which generated images
resemble real images in terms of perceptual qual-
ity, realism, and accuracy. A widely used metric
is the Fréchet Inception Distance (FID), which
measures discrepancies between feature distribu-
tions extracted from a pre-trained Inception-v3
network. An analogous metric in natural lan-
guage processing is the BERTScore, which relies
on contextual embeddings derived from BERT
[8]. Although these metrics - and their numer-
ous variants - are broadly adopted in practice,
their theoretical underpinnings remain limited. Existing theoretical analyses are largely
synthesizer-specific; for example, [27] provides guarantees tailored to PrivBayes only. A
general, systematic framework for fidelity evaluation is still lacking.

However, over the past two decades, the statistics literature has developed a rich set
of tools for estimating distances between high-dimensional probability distributions, which
are directly relevant to fidelity assessment in synthetic data. One recent example is the
fidelity metric for synthetic tabular data proposed in [43], which is grounded in a statistical
discrimination framework. This framework is generic in the sense that it can be applied
to arbitrary embedding spaces while avoiding the curse of dimensionality. To fully realize
its practical potential, however, additional engineering effort and adaptation across different
data modalities remain necessary.

3.2 Machine Learning Utility

As discussed in the introduction, another primary use of synthetic data is to train down-
stream machine learning models. Both theoretical and empirical studies, e.g., [54, 30], pro-
vide evidence supporting its practical value. However, the examples below underscore that
there is no single, universal notion of “utility.” Rather, utility spans a spectrum of task- and
metric-dependent evaluations.

For instance, [7] demonstrated that the perceived utility of synthetic data can depend
strongly on the choice of evaluation metric. In their study, tabular data generated by
Bayesian networks (BNs) and neural networks (NNs) yielded markedly different outcomes
across metrics: BN-based synthetic data outperformed on F1 score and precision, whereas
NN-based synthetic data achieved superior AUROC and recall. This example highlights that
conclusions about utility are inherently tied to the downstream task and the criteria used
for assessment.

Beyond metric dependence, recent work has revealed more subtle and consequential chal-
lenges. A recent Nature paper [36] showed that generative models trained recursively on
synthetic data are susceptible to model collapse, exhibiting progressively degraded perfor-
mance over successive training iterations. Subsequent studies [11, 45, 10] further demonstrate
that even partial inclusion of synthetic data in the training distribution can induce distribu-
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tional drift, which in turn contributes to collapse. Notably, the proliferation of AI-generated
content makes some degree of synthetic data contamination in large web-scraped training
corpora increasingly unavoidable.

Encouragingly, recent works suggest that model collapse can be mitigated through care-
ful management of training data. One strategy is to enlarge synthetic datasets according to
a superlinear growth schedule [53]. Another is to incorporate fresh real data into recursive
training loops [16]. More generally, these methods develop weighting schemes that optimally
balance newly collected real samples against previously generated synthetic samples. No-
tably, the “golden ratio” derived theoretically in [16] has been empirically validated in a
follow-up study [23].

3.3 Privacy-Preserving Capability

When synthetic data are shared, a fundamental question is how much sensitive information
from the original training data can, in principle, be inferred by an adversary. Differential
privacy (DP) provides a widely adopted formalism for reasoning about this risk by treat-
ing data release as an information-releasing mechanism and requiring that the presence or
absence of any single individual in the training data has only a limited influence on the
distribution of released outputs. Motivated by this principle, a growing line of work has
proposed DP data synthesis algorithms that aim to preserve privacy by injecting calibrated
noise into the training or generation process, including DP-GANs [58, 50] and DP diffusion
models [9]. Figure 5 illustrates three representative mechanisms for incorporating noise into
data synthesizers.

Figure 5: Three ways to preserve differential
privacy in data synthesizers

A critical caveat is that DP guarantees are
typically established at the level of the param-
eters or training processes of data synthesizers,
whereas how these guarantees translate to the
released synthetic data themselves remains un-
clear - or, at least, insufficiently understood in
a rigorous manner, even when invoking standard
post-processing arguments; also see Section 7 of
[22]. Bridging this gap requires a deeper under-
standing of the probability measure on synthetic
datasets induced by the generator.

That said, privacy leakage from synthetic
data can often be meaningfully analyzed in a
task-specific manner. For example, when synthetic data are used to estimate a population-
level statistic such as median income, it is natural to define and assess DP with respect to
that particular task. This tension between task-agnostic privacy guarantees for synthesizers
and task-specific privacy analyses for synthetic data highlights a fundamental conceptual
challenge and motivates further theoretical development.

Complementing differential privacy, a widely used empirical approach for assessing pri-
vacy risks in synthetic data is through membership inference attacks (MIAs). MIAs formalize
privacy leakage as an adversary’s ability to infer whether a candidate record was included in
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the training set of a generative model. As such, MIAs provide an interpretable and compu-
tationally efficient lens for diagnosing privacy leakage in high-capacity generative models.

Formally, let T = {xi}ni=1 be a training dataset sampled from a population distribution
P, and let a generative model G trained on T produce a synthetic dataset S ∼ G(T ). Given
a target data point x⋆ from P, an adversary seeks to decide whether x⋆ ∈ T by computing a
score f(x⋆) from information allowed by a threat model and comparing it to a threshold γ:

A(x⋆) = I{f(x⋆) > γ}.

Threat models1 range from black-box settings (access to S and possibly a reference set
R ∼ P), to shadow-box settings (the above plus knowledge of the model implementation), to
white-box settings (the above plus access to the model parameters of G). Attack performance
is typically evaluated using standard binary classification metrics (e.g., AUC–ROC), with
stronger attacks interpreted as evidence of greater privacy risk.

Across these settings, MIAs exploit the intuition that if a generative model has excessive
capacity, then the synthetic dataset S will be overly similar to the training data T relative to
an independent reference dataset R. Figure 6 illustrates this intuition, and also that without
applying an MIA, it is difficult to identify which synthetic samples leak privacy by visual
inspection alone.

Figure 6: Privacy auditing via membership in-
ference attacks. An adversary uses synthetic out-
puts S and an additional holdout set R to infer
a candidate data point x⋆ is from the training
dataset T or not.

Concretely, two broad classes of MIAs can be
distinguished: distance-based approaches, e.g.,
[47], and (local) likelihood-based approaches,
e.g., [48], which construct the score function f
in fundamentally different ways. Compared with
state-of-the-art methods [39, 21, 31], these ap-
proaches operate under realistic threat models for
data release while incurring substantially lower
computational cost—often several orders of mag-
nitude less. While MIAs do not replace for-
mal privacy guarantees, they provide a practi-
cal, task-agnostic diagnostic that is conceptually
simple and capable of revealing material privacy
risks. As such, MIAs constitute an essential tool
for empirically characterizing when and where
synthetic data may leak information about the
training data.

In the literature, there are two related notions to privacy leakage: one is overfitting
and another is memorization. They are often used interchangeably. Conceptually, however,
overfitting is a population-level phenomenon, referring to a generator that approximates the
training distribution too closely relative to the underlying population distribution, whereas
memorization is a sample-level phenomenon, whereby individual training records - often
outliers - are explicitly reproduced in synthetic outputs. While these phenomena are distinct,
they are closely related in practice. Distance-based MIAs [47] are particularly effective
for detecting memorization, whereas (local) likelihood-based MIAs [48] are more naturally

1Note that terminology for threat models is used inconsistently across the literature.

7



aligned with diagnosing overfitting, although the resulting privacy risk assessments are often
highly correlated.

3.4 Trade-offs among Fidelity, Utility and Privacy

A key insight emerging from recent studies is that privacy, fidelity, and utility are funda-
mentally intertwined. Intuitively, synthetic data with high fidelity tend to be more useful for
downstream model training, but less effective at preserving the privacy of the underlying real
data; see the benchmark results in [46]. While this intuition is broadly correct, a growing
body of empirical evidence reveals that the relationships among these three dimensions are
far more nuanced. Such observations underscore the need for a more systematic and rigorous
theoretical framework to characterize these trade-offs.

Due to space constraints, we illustrate this subtle interplay with a single representative
example concerning the trade-off between privacy and utility. Consider three different classes
of DP data synthesizers, each with distinct strengths and limitations; see Figure 5. As re-
ported in [30], when privacy constraints are relaxed - corresponding to increasing the privacy
budget ϵ in ϵ-DP - models trained with DP-SGD (Differentially Private Stochastic Gradient
Descent) [2] tend to exhibit a persistent degradation in utility that does not recover even
under weaker privacy requirements. In contrast, PATE (Private Aggregation of Teacher
Ensembles) [35] achieves competitive utility when privacy constraints are loose, but its per-
formance deteriorates sharply as stricter privacy guarantees are imposed. By comparison,
PrivBayes [57], a Bayesian network–based DP synthesizer, demonstrates relatively strong
performance across both stringent and relaxed privacy regimes.

3.5 Statistical Watermarking

The final topic addressed in this position paper concerns provenance and trust in synthetic
data, which extends beyond the traditional dimensions of fidelity, privacy, and utility. Distin-
guishing AI-generated content from human-generated content - across modalities including
images, text, audio, and tabular data - remains an open challenge, with far-reaching impli-
cations for misinformation [6], plagiarism [26], and copyright infringement [32].

While post hoc detection methods based on classification have been widely studied, they
are inherently fragile to adversarial paraphrasing, stylistic variation, and the rapid evolution
of generative models [28]. In contrast, watermarking has emerged as a promising alternative
by embedding statistical signals that are imperceptible to humans yet reliably detectable
by machines, thereby enabling scalable and robust attribution of generated content [1]. Al-
though substantial progress has been made in watermarking for unstructured modalities
such as text [24] and images [49], comparable techniques for structured tabular data remain
largely unexplored. Developing robust watermarking methods for synthetic tabular data
is therefore an open problem with unique challenges, particularly for data scientists whose
work predominantly relies on tabular data.

Let me briefly review a series of recent works [17, 15, 18] on watermarking for synthetic
tabular data. Consider a table whose entries are continuous-valued. Inspired by [24], the
unit interval [0, 1] is first partitioned into 2m equal sub-intervals, which are grouped into m
disjoint pairs. A pseudo-random key is then used to select one sub-interval from each pair,
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Figure 7: Three-step watermarking scheme for generative tabular data.

forming a designated “green list.” During generation, if a value falls outside the green list,
its fractional part is replaced by a sample from the nearest green sub-interval; see Figure 7
for an illustration.

To detect the embedded watermark, one computes, for each column i, the proportion
of generated values that fall within the corresponding green sub-intervals, denoted by Ti.
Under the null hypothesis of no watermark, the statistic satisfies the asymptotic distribution

2
√
n
(
Ti − 1

2

)
⇒ N (0, 1),

which enables watermark verification via standard hypothesis testing. Despite its simplic-
ity, this procedure has proven both effective and revealing, exposing several fundamental
phenomena governing watermarking behavior.

In particular, these studies uncover a robustness–fidelity trade-off that has received lim-
ited attention in prior work. Informally, it can be shown that to effectively erase the water-
mark via additive Gaussian noise, an attacker must inject noise with standard deviation at
least on the order of Ω(1/m), matching the scale of the watermark perturbation itself. Con-
sequently, increasing m improves fidelity by reducing distortion to the original distribution,
but simultaneously reduces robustness, since a smaller noise variance suffices for watermark
removal. This result provides a quantitative characterization of the cost of removal. Further
analysis2 reveals that balancing fidelity, robustness, and detectability may depend sensitively
on the choice of metric. In particular, when fidelity is measured via f-divergence, the optimal
trade-off between fidelity and detectability is characterized by [17].

The trade-offs among robustness, fidelity, and verifiability can thus be characterized in
a relatively transparent manner for tabular data. By contrast, the discrete and autore-
gressive structure of large language models introduces substantially greater complexity for
comprehensive analysis across all three dimensions - particularly given the need to preserve
fluency and semantic coherence after watermarking. One promising direction in this setting
is topic-based watermarking [33].

4 Path Forward

This position paper only scratches the surface of the rapidly evolving landscape of synthetic
data and generative data science. Much of the existing theoretical work remains confined
to stylized or toy settings, with only tentative connections to real-world systems. Looking
ahead, we believe that carefully designed data synthesizers have the potential not merely
to replicate existing data distributions, but to actively enhance the capabilities of large

2A softened version of the proposed watermarking can further improve the robustness–fidelity trade-off.

9



language models - particularly in multi-step reasoning [14], causal understanding [42] and
physical intelligence [4] - by generating relevant pre-training or fine-tuning data.

At the same time, the current state of generative data science exposes several funda-
mental gaps where rigorous theoretical understanding is urgently needed. Among these, a
central open question concerns how to justify and quantify the value of synthetic data from
a computational perspective. One promising viewpoint is to regard computation as a means
of “charging” real data: by injecting computational effort, the same underlying information
can be reorganized into forms that are more structured and more readily exploitable by
learning algorithms under computational constraints. This perspective complements, rather
than replaces, the classical information-theoretic framework.

From a practical standpoint, the development of tabular-native foundation models - for
table reasoning, synthesis, and prediction - emerges as a particularly important open direc-
tion, and one that is well suited to the expertise of data scientists. While recent LLM-based
approaches alleviate data scarcity through large-scale pretraining, their inductive biases are
primarily linguistic rather than tabular-structural. As a result, it remains unclear whether
language-driven generation can faithfully capture heterogeneous schemas, numerical depen-
dencies, and domain-specific constraints inherent to structured data. Tabular-native foun-
dation models, pre-trained across diverse tables and domains, offer a principled path toward
learning a “world model” of structured data. CTSyn [29] and TabPFN [20] represent an
early step towards this direction.

Addressing these challenges will require close integration of statistical theory, algorithmic
innovation, and empirical validation, and constitutes a fertile and timely direction for future
research in generative data science.
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